SGD
class SGD(Optimizer):
    """
    Stochastic Gradient Descent (SGD) optimizer.
    θ=θ−η⋅∇L/dθ
    Attributes:
    learning_rate : float
        The learning rate for parameter updates.
    """
    def __init__(self, learning_rate=0.01):
        super().__init__(learning_rate)
    def apply(self, W: np.ndarray, dl_dw: np.ndarray, b: np.ndarray, dl_db: np.ndarray) -> tuple[np.ndarray]:
        W -= self.learning_rate * dl_dw
        b -= self.learning_rate * dl_db
        return W, bLast updated