Overview
Module: ncxlib.neuralnetwork.neuralnet
Classes
NeuralNetwork(...)
: Builds a Neural Network Class
Functions
Compile(...)
: Returns None. Compiles the Neural Network.
add_layer(...)
: Adds a layer to the Neural Network
forward_propagate_all(...)
: Forward Propagates all layers in layers list
forward_propagate_all_no_save(...)
: Forward propagates all layers without saving layer information
back_propagation(...)
: Performs the back propagation on all layers starting from the output layer
train(...)
: Trains the model based on number of epochs, learning rate, input and labels
predict(...)
: Predicts the output of the model
evaluate(...)
: Provides an accuracy score across the model
save_model(...)
: Saves the model as an .h5 into desired file path
load_model(...)
: Loads the model back from the desired filepath. Must be an .h5
Module: ncxlib.neuralnetwork.activations
Classes
Activation(...)
Abstract Base Class for all Activation classes
ReLU(...)
: ReLU activation function class
LeakyReLU(...)
: LeakyReLU activation function class
Sigmoid(...)
: Sigmoid Activation function class
Softmax(...)
: Softmax Activation function class
Tanh(...)
: Tanh Activation function class
Module: ncxlib.neuralnetwork.layers
Classes
Layer(...)
: Abstract Base Class for the Layer family
InputLayer(...)
Input Layer Class to the Neural Network
FullyConnectedLayer(...)
: FullyConnectedLayer (hidden layers) within the Neural Network
OutputLayer(...)
: Output Layer of the Neural Network
Module: ncxlib.neuralnetwork.losses
Classes
LossFunction(...)
: Abstract Base Class for all loss functions
MeanSquaredError(...)
: Mean Squared Error loss function
BinaryCrossEntropy(...)
: Binary Cross Entropy loss function
CategoricalCrossEntropy(...)
: Categorical Cross Entropy loss function\
Module: ncxlib.neuralnetwork.optimizers
Classes
Optimizer(...)
: Abstract Base Class for all optimizers
SGD(...)
: Stochastic Gradient Descent Optimizer
SGDMomentum(...)
: Stochastic Gradient Descent with Momentum Optimizer
RMSProp(...)
: RMS Prop Optimizer
Adam(...)
: Adam Optimizer
Module: ncxlib.neuralnetwork.initializers
Classes
Initializer(...)
: Abstract Base Class for all Initializers
HeNormal(...)
: He Normal Initializer
Zero(...)
: Zero Initializer
Module: ncxlib.preprocessing
Classes
PreProcessor(...)
: Abstract Base Class for all Preprocessors
OneHotEncoder(...)
: One Hot Encoding Preprocessors
ImageRescaler(...)
: Image Rescaler Preprocessor
ImageGrayscaler(...)
: Image Grayscaler Preprocessor
Scaler(...)
: Abstract Base Class for Scalers
MinMaxScaler(...)
: Min-Max-Scaler Preprocessor
Module: ncxlib.dataloaders
Classes
DataLoader(...)
: Abstract Base Class for all Dataloaders
CSVDataLoader(...)
: CSV Data Loader
ImageDataLoader(...)
: Image DataLoader
Module: ncxlib.generators
Functions
random_array(...)
: Returns random uniform array of data
integer_array(...)
: Returns random integer array
generate_training_data(...)
: Generates random training data with num of samples, features, labels, etc.
Module: ncxlib.utils
Function
train_test_split(...)
: splits the data into x_train, x_test, y_train, y_test
k_fold_cross_validation(...)
: splits the data into k-folds for x_train, x_test, y_train, y_test and returns scores per fold
Last updated