Overview
Module: ncxlib.neuralnetwork.neuralnet
Classes
NeuralNetwork(...) : Builds a Neural Network Class
Functions
Compile(...): Returns None. Compiles the Neural Network.
add_layer(...) : Adds a layer to the Neural Network
forward_propagate_all(...) : Forward Propagates all layers in layers list
forward_propagate_all_no_save(...) : Forward propagates all layers without saving layer information
back_propagation(...) : Performs the back propagation on all layers starting from the output layer
train(...) : Trains the model based on number of epochs, learning rate, input and labels
predict(...) : Predicts the output of the model
evaluate(...) : Provides an accuracy score across the model
save_model(...) : Saves the model as an .h5 into desired file path
load_model(...) : Loads the model back from the desired filepath. Must be an .h5
Module: ncxlib.neuralnetwork.activations
Classes
Activation(...) Abstract Base Class for all Activation classes
ReLU(...) : ReLU activation function class
LeakyReLU(...) : LeakyReLU activation function class
Sigmoid(...) : Sigmoid Activation function class
Softmax(...) : Softmax Activation function class
Tanh(...) : Tanh Activation function class
Module: ncxlib.neuralnetwork.layers
Classes
Layer(...) : Abstract Base Class for the Layer family
InputLayer(...) Input Layer Class to the Neural Network
FullyConnectedLayer(...) : FullyConnectedLayer (hidden layers) within the Neural Network
OutputLayer(...) : Output Layer of the Neural Network
Module: ncxlib.neuralnetwork.losses
Classes
LossFunction(...) : Abstract Base Class for all loss functions
MeanSquaredError(...) : Mean Squared Error loss function
BinaryCrossEntropy(...) : Binary Cross Entropy loss function
CategoricalCrossEntropy(...) : Categorical Cross Entropy loss function\
Module: ncxlib.neuralnetwork.optimizers
Classes
Optimizer(...) : Abstract Base Class for all optimizers
SGD(...) : Stochastic Gradient Descent Optimizer
SGDMomentum(...) : Stochastic Gradient Descent with Momentum Optimizer
RMSProp(...) : RMS Prop Optimizer
Adam(...) : Adam Optimizer
Module: ncxlib.neuralnetwork.initializers
Classes
Initializer(...) : Abstract Base Class for all Initializers
HeNormal(...) : He Normal Initializer
Zero(...) : Zero Initializer
Module: ncxlib.preprocessing
Classes
PreProcessor(...) : Abstract Base Class for all Preprocessors
OneHotEncoder(...) : One Hot Encoding Preprocessors
ImageRescaler(...) : Image Rescaler Preprocessor
ImageGrayscaler(...) : Image Grayscaler Preprocessor
Scaler(...) : Abstract Base Class for Scalers
MinMaxScaler(...) : Min-Max-Scaler Preprocessor
Module: ncxlib.dataloaders
Classes
DataLoader(...) : Abstract Base Class for all Dataloaders
CSVDataLoader(...) : CSV Data Loader
ImageDataLoader(...) : Image DataLoader
Module: ncxlib.generators
Functions
random_array(...) : Returns random uniform array of data
integer_array(...) : Returns random integer array
generate_training_data(...) : Generates random training data with num of samples, features, labels, etc.
Module: ncxlib.utils
Function
train_test_split(...) : splits the data into x_train, x_test, y_train, y_test
k_fold_cross_validation(...) : splits the data into k-folds for x_train, x_test, y_train, y_test and returns scores per fold
Last updated