ncxlib
  • ⚡Welcome
  • Getting Started
    • Quickstart
    • API Documentation
      • Overview
        • Neural Network
          • _compile
          • add_layer
          • forward_propagate_all
          • forward_propagate_all_no_save
          • back_propagation
          • train
          • predict
          • evaluate
          • save_model
          • load_model
        • Activation
          • ReLU
          • LeakyReLU
          • Sigmoid
          • Softmax
          • Tanh
        • Layer
          • InputLayer
          • FullyConnectedLayer
          • OutputLayer
        • LossFunction
          • MeanSquaredError
          • BinaryCrossEntropy
          • CategoricalCrossEntropy
        • Optimizer
          • SGD
          • SGDMomentum
          • RMSProp
          • Adam
        • Initializer
          • HeNormal
          • Zero
        • PreProcessor
          • OneHotEncoder
          • MinMaxScaler
          • Scaler
          • ImageRescaler
          • ImageGrayscaler
        • DataLoader
          • CSVDataLoader
          • ImageDataLoader
        • Generators
          • random_array
          • integer_array
          • generate_training_data
        • Utils
          • train_test_split
          • k_fold_cross_validation
Powered by GitBook
On this page
  • Module: ncxlib.neuralnetwork.neuralnet
  • Classes
  • Functions
  • Module: ncxlib.neuralnetwork.activations
  • Classes
  • Module: ncxlib.neuralnetwork.layers
  • Classes
  • Module: ncxlib.neuralnetwork.losses
  • Classes
  • Module: ncxlib.neuralnetwork.optimizers
  • Classes
  • Module: ncxlib.neuralnetwork.initializers
  • Classes
  • Module: ncxlib.preprocessing
  • Classes
  • Module: ncxlib.dataloaders
  • Classes
  • Module: ncxlib.generators
  • Functions
  • Module: ncxlib.utils
  • Function
  1. Getting Started
  2. API Documentation

Overview

PreviousAPI DocumentationNextNeural Network

Last updated 7 months ago

Module: ncxlib.neuralnetwork.neuralnet

Classes

: Builds a Neural Network Class

Functions

: Returns None. Compiles the Neural Network.

: Adds a layer to the Neural Network

: Forward Propagates all layers in layers list

: Forward propagates all layers without saving layer information

: Performs the back propagation on all layers starting from the output layer

: Trains the model based on number of epochs, learning rate, input and labels

: Predicts the output of the model

: Provides an accuracy score across the model

: Saves the model as an .h5 into desired file path

: Loads the model back from the desired filepath. Must be an .h5

Module: ncxlib.neuralnetwork.activations

Classes

Module: ncxlib.neuralnetwork.layers

Classes

Module: ncxlib.neuralnetwork.losses

Classes

Module: ncxlib.neuralnetwork.optimizers

Classes

Module: ncxlib.neuralnetwork.initializers

Classes

Module: ncxlib.preprocessing

Classes

Module: ncxlib.dataloaders

Classes

Module: ncxlib.generators

Functions

Module: ncxlib.utils

Function

Abstract Base Class for all Activation classes

: ReLU activation function class

: LeakyReLU activation function class

: Sigmoid Activation function class

: Softmax Activation function class

: Tanh Activation function class

: Abstract Base Class for the Layer family

Input Layer Class to the Neural Network

: FullyConnectedLayer (hidden layers) within the Neural Network

: Output Layer of the Neural Network

: Abstract Base Class for all loss functions

: Mean Squared Error loss function

: Binary Cross Entropy loss function

: Categorical Cross Entropy loss function\

: Abstract Base Class for all optimizers

: Stochastic Gradient Descent Optimizer

: Stochastic Gradient Descent with Momentum Optimizer

: RMS Prop Optimizer

: Adam Optimizer

: Abstract Base Class for all Initializers

: He Normal Initializer

: Zero Initializer

: Abstract Base Class for all Preprocessors

: One Hot Encoding Preprocessors

: Image Rescaler Preprocessor

: Image Grayscaler Preprocessor

: Abstract Base Class for Scalers

: Min-Max-Scaler Preprocessor

: Abstract Base Class for all Dataloaders

: CSV Data Loader

: Image DataLoader

: Returns random uniform array of data

: Returns random integer array

: Generates random training data with num of samples, features, labels, etc.

: splits the data into x_train, x_test, y_train, y_test

: splits the data into k-folds for x_train, x_test, y_train, y_test and returns scores per fold

NeuralNetwork(...)
Compile(...)
add_layer(...)
forward_propagate_all(...)
forward_propagate_all_no_save(...)
back_propagation(...)
train(...)
predict(...)
evaluate(...)
save_model(...)
load_model(...)
Activation(...)
ReLU(...)
LeakyReLU(...)
Sigmoid(...)
Softmax(...)
Tanh(...)
Layer(...)
InputLayer(...)
FullyConnectedLayer(...)
OutputLayer(...)
LossFunction(...)
MeanSquaredError(...)
BinaryCrossEntropy(...)
CategoricalCrossEntropy(...)
Optimizer(...)
SGD(...)
SGDMomentum(...)
RMSProp(...)
Adam(...)
Initializer(...)
HeNormal(...)
Zero(...)
PreProcessor(...)
OneHotEncoder(...)
ImageRescaler(...)
ImageGrayscaler(...)
Scaler(...)
MinMaxScaler(...)
DataLoader(...)
CSVDataLoader(...)
ImageDataLoader(...)
random_array(...)
integer_array(...)
generate_training_data(...)
train_test_split(...)
k_fold_cross_validation(...)