Overview
Last updated
Last updated
: Builds a Neural Network Class
: Returns None. Compiles the Neural Network.
: Adds a layer to the Neural Network
: Forward Propagates all layers in layers list
: Forward propagates all layers without saving layer information
: Performs the back propagation on all layers starting from the output layer
: Trains the model based on number of epochs, learning rate, input and labels
: Predicts the output of the model
: Provides an accuracy score across the model
: Saves the model as an .h5 into desired file path
: Loads the model back from the desired filepath. Must be an .h5
Abstract Base Class for all Activation classes
: ReLU activation function class
: LeakyReLU activation function class
: Sigmoid Activation function class
: Softmax Activation function class
: Tanh Activation function class
: Abstract Base Class for the Layer family
Input Layer Class to the Neural Network
: FullyConnectedLayer (hidden layers) within the Neural Network
: Output Layer of the Neural Network
: Abstract Base Class for all loss functions
: Mean Squared Error loss function
: Binary Cross Entropy loss function
: Categorical Cross Entropy loss function\
: Abstract Base Class for all optimizers
: Stochastic Gradient Descent Optimizer
: Stochastic Gradient Descent with Momentum Optimizer
: RMS Prop Optimizer
: Adam Optimizer
: Abstract Base Class for all Initializers
: He Normal Initializer
: Zero Initializer
: Abstract Base Class for all Preprocessors
: One Hot Encoding Preprocessors
: Image Rescaler Preprocessor
: Image Grayscaler Preprocessor
: Abstract Base Class for Scalers
: Min-Max-Scaler Preprocessor
: Abstract Base Class for all Dataloaders
: CSV Data Loader
: Image DataLoader
: Returns random uniform array of data
: Returns random integer array
: Generates random training data with num of samples, features, labels, etc.
: splits the data into x_train, x_test, y_train, y_test
: splits the data into k-folds for x_train, x_test, y_train, y_test and returns scores per fold